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Abstract—The transient elastodynamic stress intensity factor was determined for a cracked linearly
viscoelastic body under impact loading. Two separate geometries along with associated loading
conditions were considered. In the first case, the body is in the form of an infinite strip containing
a central finite-length crack and is subjected to anti-plane shear tractions. Various strip heights are
considered including the possibility of a body of nearly infinite extent. In the second case, the body
is of infinite extent containing a finite-length penny-shaped crack and is subjected to radial shear
and torsional (twisting) tractions. The analytical parts of the solutions are either given by a previous
analysis of H. G. Georgiadis or are obtained from results by G. C. Sih through the use of the
correspondence principle. The numerical procedure consists of solving integral equations and then
inverting the Laplace transformed solution by the Dubner-Abate-Crump technique. Numerical
results were given for the standard linear solid by considering several combinations of material
constants.

INTRODUCTION

In the context of Elastodynamic Fracture Mechanics, the main emphasis is placed on
determining the stress intensity factor (SIF) as a function of time and of geometrical and
material parameters. An important class of problems concerns the diffraction of elastic
waves by a pre-existing crack in the material. The practical need for performing such an
analysis, within the scope of Fracture Mechanics, is briefly the following. We assume that
a small flaw (in the form of a sharp crack) existing in the particular load-carrying member
has escaped the non-destructive testing and we have thus to evaluate the SIF for a critical
size of the crack in order to check whether the fracture toughness of the material is exceeded
or not. In particular for stress wave loadings, dynamic overshoots of SIF are possible [see
e.g. Achenbach (1971), Achenbach and Brock (1973), Brock (1975), Datta (1979) and
Karim and Kundu (1988)] and it is interesting to estimate these effects by an exact analysis.

The specific problems considered in the present study concern viscoelastic solids and
are: (a) the anti-plane shear impact of a strip-like body containing a central finite-length
crack, (b) the radial-shear impact of an infinite-extent body containing a penny-shaped
crack, and (c) the torsional (twisting) impact of an infinite-extent body containing a penny-
shaped crack. The solution to all problems was obtained by a numerical procedure treating
initially second-kind Fredholm integral equations and then inverting the Laplace trans-
formed intensity function through the Dubner-Abate-Crump (DAC) technique (Dubner
and Abate, 1968 ; Crump, 1976).

One of the goals of the paper is to emphasize the suitability of the DAC technique for
transient elastodynamic mixed BVPs. In fact, we propose the replacement of the incon-
venient Orthogonal Polynomials method by the DAC method for reasons explained below.
Indeed, the most widely utilized Laplace-transform inversion method in mixed BVPs in
elastodynamics is the Orthogonal Polynomials method. This was introduced by Papoulis
(1957) and modified by Miller and Guy (1966), and Bellman ez al. (1966). The research
group of G. C. Sih has made an extensive use of the Miller/Guy technique for crack
problems (Sih and Chen, 1977, 1981).

However, the Orthogonal Polynomials technique suffers from serious drawbacks. First,
there is a “non-uniqueness” in the results since these are strongly dependent upon the choice
of the parameters f and 6 [in the notation of Miller and Guy (1966)]. Thus, in order to
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adjust these parameters, independent analytical results should be available {e.g. already
known static results can be used for large times and some classical solutions by Baker
(1962), Kostrov (1966), and Thau and Lu (1971) for smalt time]. Evidently, Sih and co-
workers made a very careful and successful application of this technique by comparing
their numerical results with available analytical ones over some common time-domains and
thus adjusting the parameters § and . However, in more advanced fracture mechanics
problems, such as viscoelastic or composite-bodies situations, analytical results are not
usually available. So, the latter procedure does not work and we need a more reliable
inversion method.

Second, by increasing the number of terms N in a certain series expansion, a matrix
becomes more and more ill-conditioned leading to instability. Thus, one gets inaccuracy by
using few terms and instability by using a lot of terms. Third, a slight error in the vaiues of
the transformed function has a great effect on the values of the original function [see for a
relative investigation in Cost (1964)]. The latter fact is of considerable importance for
mixed boundary value problems in elastodynamics since their Laplace-transformed solution
cannot usually be obtained in closed form but it is given numerically, following the approxi-
mate sohution of a Fredholm integral equation. Thus, a small error, say 0.1%, in the values
of the transformed function alters significantly the form of the original function obtained
by orthogonal-polynomial techniques. These three drawbacks may produce questionable
results when independent results are not available for comparison. Lastly, the overall
accuracy of these techniques was found to be very poor in review studies by Davies and
Martin (1979), and Narayanan and Beskos (1982).

In the latter survey papers over 20 methods for Laplace-transform inversion were
tested and compared. One of the best techniques was found to be the DAC technique. We
have adopted this method here and we recommend its further use for mixed BVPs in
elastodynamics.

Let us now briefly review work related to the present one. Although many papers have
appeared on the inertial crack-propagation problem in viscoelastic solids {see e.g. Willis
(1967), Atkinson and List (1972), Atkinson and Popelar (1979) and Popelar and Kanninen
(1980)], very limited work has been done on the problem of inertial (dynamic) loading of
viscoelastic solids containing stationary cracks (Georgiadis, 1991 ; Georgiadis et al., 1991).
In the latter papers, the problem of plane impact of a cracked viscoelastic body was treated.
On the other hand, as regards purely elastic response, scattering of waves by penny-shaped
cracks has been considered by Mal (1970), Sih and Chen (1977), Krenk and Schmidt (1982),
Martin and Wickham (1983), and Keogh (1986), among others.

In the present work, numerical results were obtained for the case of the standard linear
solid. The numerical study revealed some interesting features of the problem. For instance.
several combinations of material constants may have as a result dynamic SIF overshoots
and this fact suggests the necessity of an analysis similar to the present one for other
viscoelastodynamic crack problems too.

BASIC RELATIONS AND BOUNDARY CONDITIONS

We consider a general linearly viscoelastic solid under three different geometry and
loading conditions, i.e. anti-plane shear, radial shear and torsional deformation. The body
is of the form of a long cylinder along the z-axis, having as a cross-section the (x, y) plane.
The governing equations are as follows (Fung, 1965 ; Christensen, 1971).

In the case of anti-plane shearing along the z-axis, we have

%
T",:(X, Y, [) - H(D) 5:\' M_.(X, Y, t)’ (ld)

0
7,.(x, ¥, 1) = u(D) E u(x, y. 0, (1b)
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where i = Q/P, polynomials P(D) and Q (D) are differential operators containing D = d/dt,
V2, = [(8%/6x?) +(9*/8y™)]is the Laplace operator, and p is the mass density of the material.

In the case of radial shearing inside the (x, y) or, in polar coordinates, (r, 8) plane,
and when the Poisson’s ratio is constant, we have

b o

u,(r,z, 1) = 3 (3a)
weny=2 s Pl (3b)
o,(r,z, 1) = 2u(D) ; (%(f %)H(D)V?, , (42)
eo(r,z,0) = Z,u(D)gl; (%? aw)-i-l(D)V,z(ﬁ, 4b)
oz, =2u(D) = (2 + % 4 '/')H(D)V?, , 40)
wrnm =) 2 (2% - 2)1 2 (%44 (4d)

where 1 = R/P, R(D) is again a differential operator, V2 = [(8%/r?) + (1/r)(8/dr) + (8*/0z%)],
and the displacement potentials ¢(r, z, 1), Y(r, z, 1) satisfy wave equations containing
differential operators as coefficients

1 ¢ [aD)+2uD) )"
Veb = ey o "[ ; ] ’ G2
y_ 1 &y _[u(D)]”z
e T e A .

The ¢, and ¢, operators degenerate in the pure-elastic case into the longitudinal and
shear wave velocities.
In the case of torsional loading about the z-axis, we have

ou U
T = (D)(—" - 7"), (62)
5149
Tg = ﬂ(D ) 'a_z‘s (6b)
O*uy 10uy uy Oy p 0uy
v w Rt T amy a ™

When the special case of the standard linear solid is considered, along with the additional
assumption that the viscoelastic behaviour in bulk and in shear is identical, the Lamé
operators take the form
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Fig. 1. Semi-infinite viscoelastic strip containing a stationary crack under anti-plane shear impact
displacements.
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where f = [(U/1o) — 1] is a- measure of the difference between the short-time, p.., and the
long-time, 1y, shear moduli and [t/(1+/)] is the relaxation time. The Poisson’s ratio, v is
assumed to remain constant through the deformation process and this simplifies the analysis
a little.

With eqns (1)—(8), the basic relations describing the material response were completed
and we now direct attention to the boundary conditions of the specific problems considered
here.

In the first case, we consider a body in the form of an infinite strip of height 2A
containing a central crack of length 2a, see Fig. 1. The loading consists of impact dis-
placements w,(x, + 4, 1) = +wyH (1) applied along the lateral strip faces. However, solving
the following auxiliary problem suffices for our purpose, i.e. determining the SIF

uAx, +h,t) =0 for — oo < x < o0, (9a)
u#.(x,0,1) =0 for {x] > a, {9h)
1,.(x, 0%, 1) = —u(D) ”f« H@) for|x| <a. (9c)

Quiescent initial conditions, i.e. u. = #, = 0 for ¢ < 0 are relevant to the problem.

In the second case, a state of pure radial shear is obtained if the transient wave incident
to the penny-shaped crack produces only radial displacement u,(r, z, ) in the solid, whereas
up = u, = 0. This state can be achieved when the only stress component, 7,.(r, z, ) contains
a Heaviside step function of time. As in the previous case, the following auxiliary BVP
suffices for determining the transient SIF (see Fig. 2)

Top Surface

....'to

Radial Shear

Top Surface

-1,(r/a)

Torsion

Fig. 2. Penny-shaped cracks in a viscoelastic body of infinite extent under radial-shear and torsional
impact. The stress components in cylindrical polar coordinates are also indicated.
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1,,(r, 07, 0) = —1 H(f) forr<a, (10a)
o, (r, 0", ) =0 for0 <r< oo, (10b)
u(r,07,0=0 forr>a, (10c)

u(r,z,0) =0 for(r*+z%)"?* > 0. (10d)

Quiescent initial conditions are also assumed.
In the third case, the crack of diameter 2a is acted upon by impact torsional tractions
of amplitude 7, (see Fig. 2). The boundary conditions are written as

15, (r,z =0%,0) = —ro(g)H(t) forr < a, (11a)
ug(r,z=0",0=0 forr>a, (11b)
uy=0  for (rP+z)"* - 0. (11c)

The object of the present work is to determine viscoelastodynamic SIFs for the
problems defined by (9), (10) and (11).

ANALYTICAL FORM OF SOLUTION

First, the following definitions of integral transforms are presented

F4p) = f: Fyerd, f@) = Qni)~! f FHp)e” dp, 12)
Ttc(s, y.p) = Ow F*(% y.p) cos (sx) dx, (132)
fﬁo(sy Z,p) = ) f*("yzap)’-fe(fs) dl‘, (13b)
Thzp = | rznprhsdr (13¢)

The Laplace transform is utilized in all problems to suppress time, whereas the Fourier
cosine transform is utilized in the anti-plane shear problem and the zero-order and first-
order Hankel transforms are utilized in the axisymmetric problems.

The analytical part of solutions can be obtained by applying the above integral trans-
forms to the governing equations and the boundary conditions, and then constructing dual
integral equations for the unknown intensity functions (which are directly related to SIFs
in the time domain). In the Laplace-transform domain, the dual IEs can be implicitly solved
through the method of Noble (1963) by reduction to a second-kind Fredholm IE, the kernel
of which is given in terms of an integral involving both a semi-infinite interval and an
oscillatory integrand.

The analytical solution for the anti-plane shear problem was given previously by
Georgiadis (1987), whereas the respective purely elastic radial shear and torsion problems
were treated by Sih and Chen (1977). Therefore, for the latter cases, by invoking the
correspondence principle (Tao, 1963 ; Achenbach, 1973), we can obtain a formal solution
in the Laplace-transform domain. However, this is not of too much help from the numerical
point of view, since the Laplace transformed intensity functions, F*(1, p), G*(1, p) and
H*(1, p) below, depend already upon the material constants.

Under the following definition of the dynamic SIFs
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kas(n = lim [[2(x=a)]"" " 7,.(x, 0, 1)), (14a)
kes(r) = Him [[2(r—a)]"?*7..(r. 0, D)]. (14b)
k() = m [[2(r=a)]" 75, 0. 1)), (l4c)

for the anti-plane shear (AS), radial shear (RS) and torsion (T) problem, respectively, the
analytical forms of solutions were found to be

woutT ] CF*(1,p)
kas(r) = S uXp) - ¢ dp, (15a)
h 2m g, P
g1 G*(1,
ks =" J U P e, (15b)
2z LT By P
) _ 4r,a'? ] H*(1, p) o )
kr(ty = 3 mi Lr oy —e” dp, (15¢)
where the intensity functions result in the solution of the Fredholm IEs
I
F*(E, p)+J Kas(& . p)F*(n, pydn = &', (16a)
0
.
G*(é.p)+J Kis(E.n.p)G*(n, p)dn = ¢, (16b)
Y]
I
H*(é-p)+J K(& . pyH*(n, p)dn = &°. (16c)
0
The kernels in (16) have the following forms
Kas = (&' | [2coth (pah) —s] - Jo(s€) - Jo(sm) ds, (17a)
JO
. = v;' $ .
Kps = (S A"L' 'B<a~p>— 1]Jx,rz(S§)'J3,z(Sﬂ) ds, (17b)
Jo P2
"/,
Kr = (&' (12—9) Jaa(s8)  J3a(sm) ds, (17¢)
JO
where Jo(*), J32(0) = (2/m)"? [sin ({)/{ —cos ()] are first-kind Bessel functions, and
I R (C’f)z
L p) = - 25> + (pfet)]’ — 4 =, 18
B(s. p) 250, (1— 1Y) [[25% 4+ (p/c$)°]" —4sy172] o) (18)

where k = (¢%/c¥)'? and the longitudinal and shear-wave “‘speeds” are complex functions
of the Laplace-transform variable p

. B i _*_2#*‘)1,’2 . :(H'j>”2 (19)
m(p)—( p . c3(p) o)

whereas the functions 7,(j = 1, 2) in (17) are given by
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p 271172
— 2
n= [S +(C,-*(p))] ' @0

Note that in (19) the Riemann sheet is chosen so that ¢f(p) > 0 on the positive real
axis, and any required branch cuts are taken to the left. Moreover, to define y,(p, 5) as
analytic functions, the p-plane must be cut appropriately. In view of the finiteness condition,
the branches of y;(p, s) should be defined so that Re [y;(p, s)] > 0. Since also, we are aiming
at a Laplace-transform inversion of the solution by means of a Bromwich-path integral, an
inspection should be made about possible poles and branch cuts of the integrands in the
Re (p) > 0 half-plane. Obviously, whether or not the p-plane can be cut appropriately will
depend upon the forms of the viscoelastic Lamé functions 2*(p) and p*(p) of the particular
material.

The latter inspection was performed here for the standard linear solid, see (8), where
the complex Lamé functions are given as

2
WD) = b AN0) = 15, B, @)

The symbolic-manipulations program DERIVE was utilized for all numerical values of the
standard-linear-solid constants considered for deriving the results in the last section of the
paper. In ali cases, we found that the branch cuts for y;(p, 5) were extending parallel to the
negative Re (p)-axis emanating from branch points in the Re (p) < 0 half-plane. Thus, the
integrands in (15) are always analytic functions in Re (p) > 0 and consequently the integrals
in (15) are amenable to Laplace-transform inversion by means of a Bromwich-path integral.

LAPLACE TRANSFORM INVERSION

The inversion of the Laplace transform in (15) was carried out numerically by following
the DAC technique (Dubner and Abate, 1968 ; Crump, 1976). In this section, this technique
will be briefly described.

One may start from eqn (12) and notice the following alternative form of the original
function f(¥)

f(@) = (e“In) J; ’ [Re f*(c+iu) - cos (ut) —Im f*(c+iw) - sin (ut)] du, (22)

where p = c+iu. If the trapezoidal rule for integrals over semi-infinite intervals is applied
to eqn (22), then the resulting approximate expression for f(7) is a Fourier series (Davis
and Rabinowitz, 1984)

f(H =~ (e“,f’T)[% o+ i [Re f*(c+ikn/T)-cos (knt/T)
£=1
~Im f*(c+ikn/T)sin (knt/T )]]. 23)

Crump (1976) has presented a systematic analysis of errors in the above procedure,
from which one can compute f(#) to a predetermined accuracy. First, T is chosen so that
2T > tya and then ¢ is computed by

¢ =q—(In(E")/2T, 24
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Table 1. Laplace-transform inversion results by the Miller/Guy and DAC techniques for a function
with an exact original

f(t) = (¢/sing,  [*(p) = pi(p*+1)2

Miller/Guy Miller/Guy
§40) £ DAC Exact
t (B=150,6=075  (B=100,5=1.00) ¥0) 1)
0.0 —0.0034 —0.0063 0.00002 0.00000
1.0 0.4210 0.4182 0.41986 0.42073
2.0 0.9045 0.9143 0.90899 0.90929
3.0 0.2008 0.2313 0.21168 0.21168
40 —1.5383 —1.5012 —1.51361 —1.51360
5.0 —2.3266 —2.0712 —2.39730 —2.39731
6.0 —0.7197 —2.0355 —0.83824 —0.83824
7.0 1.4041 - 1.9608 2.29945 2.29945
8.0 2.9049 —1.9230 3.95743 3.95743

where ¢ is a number slightly larger than max [Re (P); P is a pole of f*(p)] and the relative
error is to be no greater than E’ (say £’ = 10~ ®). It is possible also to increase the rate
of convergence of (23) and thus reduce the truncation error by using a suitable series
transformation. Crump recommends the epsilon algorithm (Abramowitz and Stegun, 1972)
which was also adopted in Georgiadis (1991) and in the present study.

As a demonstration of the efficacy of the DAC technique and its superiority over the
Miller/Guy technique, the results in Table 1 are presented. A Laplace-transformed function
with an exact inversion was chosen as f*(p) = p/(p*+1)*, whereas N =19 and N = 30
was taken in the Miller/Guy and DAC, respectively. It is seen from the Table the
strong dependence of the Miller/Guy results upon the choice of the f and & parameters and
the inaccuracy of the latter technique. Note also that the DAC technique is essentially
similar to the Durbin technique employed by Narayanan and Beskos (1982).

NUMERICAL PROCEDURE

First, the integral equations (16) have to be solved numerically. Since these equations
contains complex functions, we have to separate real from imaginary parts in the following
manner

F*(&, p) = FY( Rep, Im p) +1F3(¢, Re p, Im p), (25)
KAS(ia n, P) = KASl(é9 1, Repa Im p)+iKASZ(é’ nﬁRep’ Im P) (26)

Then, eqn (16a) is equivalent to the following coupled Fredholm integral equations
1 .
F’H‘j (Kasi * F¥—Kpsy " F¥) dn = £172, (27a)
0
1
Fg‘*’j (Kas2* F¥+Kas - F$)dn = 0. (27b)
0

Similar expressions are also obtained for the G*(&, p) and H*(¢, p) intensity functions.

The above two-dimensional systems were solved for F*(£, Rep,Im p), G*(¢,
Re p, Im p) and H*(¢, Re p, Im p) by using the Gauss quadrature in conjunction with
complex algebra on the computer. Since p = c+i(kn/T) is a parameter in (27), these equa-
tions have to be solved a number of times equal to the number of terms considered in the
Laplace transform inversion (23).

Since &, n < 1, the integral giving the kernels K,s, Krs and Ky in (17) is not highly
oscillatory, the standard Gauss rule can be applied. The semi-infinite interval was normalized
to [—1, +1] by the Stieltjes transformation (Davis and Rabinowitz, 1984). The above
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procedure was checked both by the IMT rule (which is convenient for integrands with end-
point singularities) and the Longman rule (which is convenient for oscillatory integrals over
infinite intervals) (Davis and Rabinowitz, 1984) and found to be competitive. Thus, we
utilized the simple Gauss rule throughout the numerical procedure, and evaluated the
kernels with respect to p. The Jy(+) Bessel function appearing in (17a) was approximated
by convenient polynomial forms (Abramowitz and Stegun, 1972).

For instance, the discretized form of the system (27) is as follows

l(x19p)+ Z lei(x-x])l/2 Z Qk M(x,, axkap)]

J=n/241

F(xj’P)—' Z Q][(xlxj)l/2 Z Qk MZ(xnx]’xkap):l

J=n/2+1

F3(x;, p) = x/?, (282)

Fz(xup)+ Z Qj[(x-x:])l/z Z Qk MZ(xu ’xk’p):l

J=n/2+1

'FT( P)+ Z Q][(xlx)l/z Z Qk M (X,, ’xk’p):l

J=n{2+1

.Fg(xja p) = 0’ (28b)
where i = 1,2,...,n/2, nis the number of Gauss-quadrature collocation points, Q; and Q,

are the Gauss-quadrature weights, and x;, x;, x, are the Gauss-quadrature collocation points.
Moreover, the complex kernel function in (28) is given as follows [see equation (17a)]

I+x 1+x 1+x, 2
M(x;, %;, %4, p) = [vk,, ~coth (7e,h) — | x"] Jo (x.-l_x"> Jo( k)

x 1) T—x)”

(29)

M(x;, x;, X, p) = M (x;, X;, X4, Re p, Im p) +iM,(x;, x;, x,., Re p, Im p), (30)

1/2
Vep = [(:”") +(p/c¥) ] . 31

After determining the complex intensity functions F*(1, p), G*(1, p) and H*(1, p), the
next step is the numerical inversion of the Laplace transforms in (15). However, before
applying the DAC technique, we normalize both the SIFs and the time in the following
way

where

h 2
mas (1) = WkAs(t)’ mgs(?) = Wkks(t),
3
my(f) = 472 iz kr(), (32)
and
cy o
p=—_w t=§Td, (33)

where ¢’ = (p,,/p)"? is the short-time shear-wave velocity. Then, eqns (15) become
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1 i ]
m, (1) = 2niJ L,(1,wye*"edw, (¢=AS.RS,T). (34)

and further are approximated according to (23) as

m,(t) = (e7¢/T) [; L,(o)+ Z [Re L (c+1kn/T) cos (knT,/T)
k=1

—Im L, (c+ikn/T) sin(knT,/TY |, (35

where

LAs(l, 1&') = 7‘;" 77777 . (36a)
G"‘(l,c2 w)
o
Les(l,w) = —- . (36b)
H*(l,(':‘ w)
a
L= e

and N is the number of terms required to obtain convergence. In this study, 60—70 terms were
usually enough to get very accurate results. Of course, the accelerating epsilon algorithm was
also employed.

In our opinion, the only disadvantage of the above-described numerical procedure 1s
the large computation time involved. This is mainly due to the fact that the system (27) has
to be solved the same number of times as are required for the respective number of terms
in the approximation of the Laplace-transform inversion.

RESULTS AND CONCLUDING REMARKS

Numerical results for the dynamic SIFs were obtained for a material with constant
short-time modulus p,, = 1268 MN m~ 2, Poisson’s ratio v = 0.345 and density p = 1200
kg m~3, and variable f, 7 in each case. The latter groups of material constants were
considered in order to examine the effect of the viscoelastic behaviour.

In all cases, relations (8) pertinent to the standard linear solid were employed, whereas
the complex Lamé functions are given by eqns (21). Clearly, in view of (8), the purely elastic
case can be recovered from this material model by letting either /' — 0 or 1 —» o0. Note also
that the numerical values of f and ¢ utilized for obtaining our results fall into the range
found in impact experiments employing PMMA (Nunziato et al., 1974) and other polymers
(Kuhn and Engel, 1973).

We quote also, for future usage, the following alternative to (8) representation of the
standard-linear-solid response, which is based on the concept of relaxation functions G;(r)

(=12
G\(1) = fuff[l +f-exp <4 I%L[ t)] (37a)



Shear and torsional impact of viscoelastic bodies 1901

1.4

p=20
12 L o A7 52175
/ N=18

10 r / \ti:__-_.._....-___.\. }8
508t \‘“w«‘-_‘?\ 16
Eos | N1

—— DAC 17

04 ~=—= Miller - Guy

02 =00, a/h=005

OO ' i I i 3 i il £

Fig. 3. Elastodynamic anti-plane shear SIF time history by the DAC and Miller/Guy inversion
techniques. The static limit is m(t = o) & 1 in this case.

2(14v)
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G,(1) = G(D. (37b)

First, we present results for the anti-plane shear case.

Figure 3 shows the dynamic SIF time history in the case of a stationary crack under
impact of an elastic (f = 0.0) plate of almost infinite extent (a/k = 0.05). The static limit
for this problem is m(z = c0) = 1, whereas a dynamic overshoot of about 25% occurs. For
the purpose of comparison both the DAC and Miller/Guy techniques were utilized for this
particular case. It can be clearly seen the strong dependence of the Miller/Guy results
(Sih’s procedure) on the choice of the parameters contained in these techniques. One can
speak about a “non-uniqueness” of the results given by this method.

In Fig. 4, the influence of the strip height on the viscoelastodynamic SIF is presented.
By reducing 4, the SIF decreases. Furthermore, a comparison of the SIF time variation in
Figs 3 (elastic case) and 4 (viscoelastic case) for a/h = 0.05 shows that the peak value for
the SIF is lower in the viscoelastic problem but the difference between the maximum value
and m(T4 = 9) is greater in the viscoelastic problem. This means that in certain viscoelastic
situations, there is the possibility of a much greater dynamic SIF overshoot in respect to
the steady-state value than in the respective elastic case. Clearly, this is due to the continuous
loss of energy in the viscoelastic body. The above SIF behaviour implies the necessity of
performing a viscoelastodynamic analysis for cracked materials exhibiting a strong viscous
effect, since a purely elastic analysis could give a rather conservative estimate of the dynamic
SIF overshoot.

Finally, a comparison between Figs 4 (f =20, ¢§¥t/A=2.0) and 5 (f =0.15,

14
f=2.0
12 F c,t/h=20
10 F
a/h= 005
~ 08 k- \
E 06 025
04 r r
02 10
00 1 1 1 1 L 1

0ot 2 3 4 5 6 7 8 8

Fig. 4. Viscoelastodynamic anti-plane shear SIF time history for p., = 1268 MN m~2, f = 2.0,
¢ 1/h = 2.0 and variable strip height.
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Fig. 5. Viscoelastodynamic anti-plane shear SIF time history for p, = 1268 MN m "2, f = 0.15,
a/h = 0.05 and variable relaxation time.

¢ t/h = 2.0) indicates that by increasing the difference f between short- and long-time
modulus, i.e. by increasing the viscous behaviour, the SIF decreases.

Next, we present results for the radial shear and torsion cases.

Figure 6 shows the dynamic SIF time history in the case of a stationary penny-shaped
crack under radial-shear impact of an elastic (f = 0.0) body. The static limit for this
problem is m(f = o0) = 1 and so this may serve for checking the numerical results. Again,
for the purpose of comparison, both the DAC and Miller/Guy techniques were utilized for
this particular case. As previously, one may notice for this case also the radical dependence
of the Miller/Guy results on the choice of the parameters contained in this technique. Figure
7 presents analogous results for the torsional impact case. Similar conclusions are also
drawn.

In obtaining the results shown in Fig. 8, a small difference (f = 0.15) between the
short- and long-time shear moduli was taken, whereas two different values of the relaxation
time were considered (¢ t/a = 100.0 and 0.05), for the torsional case. We can observe from
these results that the SIF—time curve closely resembles that of the elastic case, i.e. there is
a dynamic overshoot at about Ty = 1 and then the SIF tends slowly to its steady-state value
which is near m = 1. This is due to the almost identical values of p., and u, and thus, even
radical changes of the relaxation time produce no appreciable viscous effect.

However, strong viscous effects are observed in the results of Figs 9, 10 and 11, 12,
where medium and large f was considered, respectively, for both the torsional and radial-
shear states.

To obtain the SIF-time curves in Figs 9 and 10, f = 2.0 was taken, whereas the
relaxation time was variable from large to small values. In the first case, ¢5 t/a = 100.0, the
SIF time variation resembles the “elastic’” one. In the second case, ¢ t/a = 2.0, the viscous

" ég f00
— 7~
—= T e ]
08 |
m(t) B8=-10
I 5=10
N=1
04 i >
| —— DAC
—-—~Miller-Guy
0.0 [ ! ! 1 1 L
0 2 4 6 8 10

T4

Fig. 6. Elastodynamic radial-shear SIF time history by the DAC and Miller/Guy inversion tech-
niques. The static limit is m(t = s0) = 1 in this case.
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Fig. 7. Elastodynamic torsional SIF time history by the DAC and Miller/Guy inversion techniques.
The static limit is m(f = o) = 1 in this case.

2k C‘é‘"l'\/a‘=100.0 f=015
08 1 \aos
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0.0 1 | i 1 I i 1 |
0 2 4 6 8 10

Fig. 8. Viscoelastodynamic torsional SIF time history for y,, = 1268 MNm~ 2 f = 0.15and variable

relaxation time.
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Fig. 9. Viscoelastodynamic torsional SIF time history for y1,, = 1268 MNm ™2, f = 2.0 and variable

relaxation time.
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effect was pronounced since a very weak dynamic overshoot occurs. In the third case,
c¥t/a = 0.05, one would expect perhaps a more viscous impact response and possible no
dynamic overshoot in the SIF values because of the abrupt decrease of the relaxation
functions in respect to time. However, an appreciable dynamic overshoot occurs but it is
somewhat delayed. A similar observation can also be made in Figs 11 and 12.

This “unexpected” behaviour can be explained in view of Fig. 13, where the effect of
large, medium and small relaxation time is shown upon the relaxation function. When the

SAS 30:14-E
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Fig. 10. Viscoelastodynamic radial-shear SIF time history for p,, = 1268 MN m~2, f =20 and
variable relaxation time.
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Fig. 11. Viscoelastodynamic torsional SIF time history for u, = 1268 MN m~2 f = 10.0 and
variable relaxation time.
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Fig. 12. Viscoelastodynamic radial-shear SIF time history for u,, = 1268 MN m "2, £=10.0 and
variable relaxation time,

values G(0) and G(0) are fixed, in ranges where the G(¢) curve is almost flat and slowly
decreasing, one should expect to observe instantaneously, an almost elastic material
response, whereas in ranges of continuously varying G(¢) the viscous effect is more
pronounced.

The delayed SIF dynamic overshoot for small 7 is due to this delayed elasticity of the
material model. The latter phenomenon is more vivid in Figs 11 and 12 for f = 10.0 and
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G(t) o

‘/ 2)

3)

t

Fig. 13. Dependence of the relaxation function G(f) on the relaxation time [t/(1+/)] for the
standard linear solid. Curve (1): large t (pronounced elastic behaviour), Curve (2): medium 1,
Curve (3) : small t (pronounced viscous behaviour).

c¥1/a = 0.05. Since the flat —G () interval occurs after a longer time than in the case
f = 2.0, the dynamic overshoot time-interval is observed now to be even more delayed.
Focusing our attention again on the results presented in Figs 11 and 12, we ob-
serve that a still appreciable dynamic overshoot occurs for very large relaxation time
(c¥t/a = 100.0) but the steady-state limit is now more distant from the purely elastic one.
For medium relaxation time (¢¥ t/a = 2.0) no SIF overshoot occurs.
In summarizing our numerical study, the following conclusions are quoted :

(1) When £ is small, even radical changes of the relaxation time produce no appreciable
viscous effect. Strong viscous effects are observed, when medium and large f is considered.

(2) When the values G(¢ = 0) and G(r = o) are fixed, in ranges where the G(z) curve
is almost flat and slowly decreasing, one should expect to observe instantaneously, an
almost elastic material response (in respect to the overshoot of SIF), whereas in ranges of
continuously varying G (t) the viscous effect is more pronounced.

(3) Performing a viscoelastodynamic analysis for cracked materials is useful, since
unexpected dynamic SIF overshoots may occur.

(4) A pure elastic analysis based on the steady-state viscoelastic material response may
underestimate the SIF values.
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